

POSTER PRESENTATION

Open Access

The role of antimalarials in lupus nephritis: a review

Seng-J Lee^{1*}, Earl D Silverman¹, Joanne M Bargman²

From 2011 Pediatric Rheumatology Symposium sponsored by the American College of Rheumatology Miami, FL, USA. 2-5 June 2011

Purpose

Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease affecting various organs, with lupus nephritis being one of the most important and common serious manifestations. Antimalarials (AM) are one of the many immunomodifying medications

Authors	Year	No. pts	Study	Outcomes of AM use in SLE
Fessier et al. LUMINA (38)	2005	518 (291 HCQ users, 227 non- users)	Longitudinal cohort	Reduction in accrual of new disease damage (HR 0.68; 9%%Cl 0.53-0.93, p=0.014)
Ruiz-Irastorza et al[42]	2006	232 (150 AM users, 82 non- users)	Prospective cohort	Increased survival (cumulative 15yr survival 0.95 AM vs. 0.6 non- AM, p<0.001; HR 0.14 (95%CI 0.04-0.48))
Calvo-Alen et al LUMINA [43]	2006	32 SLE pts with osteonecrosis vs. 59 matched controls	Nested case- control	Possible protection against osteoporosis
Barber et al[44]	2006	35 patients with LN (16 sustained remission vs. 19 controls)	Retrospective cohort	Improved sustained remission rates
Wozniacka et al[14]	2006	25 SLE pts vs. 25 control pts	Cohort	Improved reduction in SLAM scores
Costedoat- Chalumeau et al[45]	2006	143 SLE pts (120 inactive disease vs. 23 active disease)	Longitudinal cohort	Lower HCQ levels in patients with flares (OR 0.4, 95%Cl 0.18- 9.85, p=0.01)
Alarcon GS et al. LUMINA [37]	2007	608 SLE pts: 547 live (controls), 61 deaths (cases)	Case-control	Increased survival (OR 0.128, 95%CI 0.054 – 0.3)
Ruiz-Irastorza et al[46]	2007	235 SLE pts (156 AM users vs. 79 non-users)	Observational prospective cohort	Protective against neoplasia (1.3% vs. 13%, p<0.001; cumulative cancer-free survival OR 0.98 vs. 0.73, p<0.001)
Siso et al [47]	2008	206 pts with LN (56 on HCQ prev, 150 non-HCQ)	Cohort	Protective against infection (11% vs. 29%, p=0.006) Increased survival (2% vs. 13%, p=0.029)
Ruiz-Irastorza et al [48]	2009	249 SLE pts: 83 pts with infections (cases) vs. 166 no infections (controls)	Nested case- control	Protective against infection (OR 0.06, 95%CI 0.02-0.18)
Shinjo et al [49]	2009	57 SLE pts ≥65γo: 43 disease remission, 14 disease activity	Retrospective cohort	Disease remission strongly associated to AM use (OR 12.9, 95%CI 2.9-58.1)
Pons-Estel et al. LUMINA [50]	2010	580 pts	Longitudinal observational cohort	Possible delayed onset of integument damage (HR 0.23, 95%Cl 0.12-0.47)
Shinjo et al. GLADEL [40]	2010	1480 pts (1141 AM users vs. 339 non- users)	Longitudinal cohort	Increased survival (4.4% vs. 11.5%, p<0.001; HR 0.62, 05%Cl 0.39-0.99)

¹The Hospital for Sick Children, Toronto, ON, Canada

Full list of author information is available at the end of the article

© 2012 Lee et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors	Year	No. pts	Study	Outcomes of AM use in SLE
tuiz-Irastorza et il[42]	2006	232 (150 AM users, 82 non- users)	Prospective Cohort	Protective against thrombosis (HR 0.28, 95% CI 0.08-0.90)
De Leeuw et al [84]	2006 38 SLE HCQ users: 7 with CVD, 31 w/o CVD.		Cross- sectional	No significant change in cardiovascular risk
achet et al [56]	2007	30 pts: 10 SLE CQ-users, 10 SLE no therapy, 10 normal controls	In vivo	Improved clearance of low-density lipoproteins
Choojitarom et al.[85]	2008	67 SLE aPL+ pts	Cohort	Patients with lupus nephritis had higher risk of venous thrombosis OR 6.2, p=0.005) Patients on AMs had decreased risk of thrombosis (OR 0.86, p=0.02)
iiso et al [47]	2008	206 pts with LN (56 on HCQ prev, 150 non-HCQ)	Cohort	Reduced risk for hypertension (32% vs. 50%, p=0.027) Protective against thrombosis (5% vs. 17%, p=0.039)
Kaiser et al [86]	2009	1930 SLE pts	Cohort	Protective against thrombosis (OR 0.62, p=0.0005)
Tektonidou et al [87]	2009	288 pts: 144 SLE aPL+ pts, 144 matched SLE aPL- pts	Longitudinal cohort	Protective against thrombosis – duration effect (aPL+: HR per month 0.99, p=0.05; aPL-: HR per month 0.98, p=0.04).
Jung et al (81)	2010 54 SLE pts with TE (cases), 108 SLE pts w/o TE (controls)		Nested case-control	Protective against thrombosis (OR 0.32, 95%Cl 0.14-0.74)
Penn et al. [68]	2010 149 SLE pts, 177 RA pts		Cross- sectional	Lower fasting glucose in non-diabetic women i.e. potential improvement in glycaemic control (SLE: 85.9 vs. 89.3 mg/dl, p=0.04; RA: 82.5 vs. 86.6 mg/dl, p=0.05)

Figure 2 Overview of effects of antimalarials on cardiovascular disease and thrombosis – articles from 2005-2010. CVD = cardiovascular disease. aPL = antiphospholipid antibodies. TE = thromboembolic events. RA = rheumatoid arthritis.

Authors	Year	Pts	Study	Outcomes on LN
Tsakonas et al [88]	1998	47 pts (25 continued HCQ, 22 withdrew)	Cohort (randomized withdrawal)	May reduce risk and time to renal disease flare (RR 0.26; 95%Cl 0.03 to 2.54)
Fessler et al LUMINA (38)	2005 518 (291 HCQ at t=0, 227 non-HCQ)		Longitudinal observational cohort	Less likely to have renal disease (8.6% vs. 23.3% at time=0, p<0.0001)
Kasitanon et al (Hopkins Lupus Cohort) [89]	2006 29 (11 HCQ/MMF, 18 MMF only)		Cohort	Patients with membranous LN on MMF had improved rates of renal remission within 12 months (HCQ 7/11 (64%) vs. non-HCQ 4/18 (22%); p=0.036)
Siso et al [47]	2008 206 (56 pts on AM prior to LN diagnosis, 150 non-AM)		Cohort	Reduced % pts with creatinine elevation >4mg/dl (2% vs. 11%, p=0.029) Prolonged time to end-stage renal failure (2% vs. 11%, p=0.044) Reduced frequency of hypertension (32% vs. 50%, p=0.027) Reduced mortality rate (2% vs. 13%; p=0.029)
Pons-Estel et al LUMINA (90)	2009	203 (161 HCQ users, 42 non- HCQ)	Longitudinal observational cohort (prospective)	Lower frequency of Class IV glomerulonephritis (9.9% vs. 33.3%, p-0.01) Lower disease activity Lower glucocorticoid dose (Prednisone dose 11.3 +/-12mg vs. 16.8 +/- 20.5mg, p=0.025) Protective of renal damage (full HR 0.12, 95%Cl 0.02-0.97, p=0.0464) Lower cumulative probability of renal damage (p<0.0001)
Shinjo et al GLADEL [40]	2010	1480 (1141 AM users, 339 non-users)	Observational inception cohort	AM users had less renal disease prevalence (28.4% vs. 42.8%; p<0.001)

Figure 3 Overview of studies on AMs and outcomes related to LN. MMF = mycophenolate mofetil.

Side effect	Studies	Frequency		
Retinopathy-CQ	Leecharonen et al 2007 [8]	Retinopathy 0.18 - 19%		
	Marmor et al 2002 [107] Wang et al 1999 [103] Avina-Zubieta et al 1998 [122] Finbloom et al 1985 [123]	Corneal deposits 6 - 7%		
Retinopathy – HCQ	Wolfe et al 2010 [110] Mavrikakis et al 2003 [108] Marmor et al 2002 [107] Wang et al 1999[103] Avina-Zubieta 1998 [122] Levy et al 1997 [111] Spalton et al 1993 [124] Finbloom et al 1985 [123]	Retinopathy 0 – 6% Corneal deposits 0.8%		
Ototoxicity	Wang et al 1999 [103] Morand et al 1992 [125]	Ototoxicity 0 - 0.6%		
Cardiotoxicity	Costedoat-Chalumeau et al 2007 [113, 126] Wozniacka et al 2006[127] Nord et al 2004 [112] Cervera et al 2001 [128]	Heart conduction defect 0 - 4% myocardiopathy and AV block <1% Case reports of cardiomyopathy, heart conduction disturbances, congestive heart failure		
Cutaneous	Kalia et al 2010 [6] Di Giacomo et al. 2009 [115] Puri et al 2008 [114] Herman et al 2006 [118] Wang et al 1999 [103] Avina-Zubieta et al 1998 [122]	Skin rash 0.6 – 4.3% Hyperpigmentation – 10 to 30% (quinacrine>CO/HCQ Urticaria 12% Psoriasis – insufficient evidence to suggest flare causality		
Gastrointestinal	Morand et al 1992 (125) Bezerra et al 2005 (129) Van Beck, Piette 2001 Wang et al 1999 (103) Avina-Zubieta et al 1998 (122) Morand et al 1992 (125)	Gastrointestinal 0 – 30% Nausea / vomiting 12% Diarrhoea 18% Elevated LFTs – 10%		
Other	Casado et al 2006 [119] Bezerra et al 2005 [129] Wang et al 1999 [103] Avina-Zubieta et al 1998 [122] Morand et al 1992 [125]	Headaches 1.3 - 12% Myopathy 0 - 6.7%		
Rare (case reports)	Kalia et al 2010 [6] Collins et al 2008 [120] Bracamonte et al 2006 [121]	Haemolysis in G6PD deficiency patients. Severe leucopenia, aplastic anaemia Acute psychosis from CQ (PCP-like) Pseudo-Fabry disease		

used in SLE, however less known is its role in lupus nephritis. Our study examined the history of AM use, theorized mechanisms of action, efficacy in SLE, in particular in lupus nephritis, safety in pregnancy, and overall safety profile.

Methods

We conducted a search of all relevant literature using Medline (OVID and EMBASE) and PubMed. We

included randomized-controlled trials, observational cohort studies, and case-control studies. Case reports were only included for the adverse effect profile of AM.

Results

•AM use benefits patients with SLE including improving survival, reducing disease activity, new organ involvement, integument damage, risk of infection, risk of thrombosis, and possible cardioprotective and antimalignancy effects.

•In lupus nephritis, AM use improves time to endstage renal disease, disease activity, flare rates, disease remission as an adjunct with other immunomodifying drugs, and reduced cumulative corticosteroid use.

•AM are safe to use and should be continued in pregnant SLE patients for its beneficial effects of reducing disease activity, flare rates, cumulative corticosteroid requirements, and possible reduction in development of cardiac neonatal lupus erythematosus.•AM have a good safety profile, with gastrointestinal symptoms being the most common. Careful regular monitoring for retinopathy is recommended as per American Academy of Ophthalmology.

•In patients with renal disease, caution with dosing and careful monitoring for adverse events should be taken.

Conclusion

AM are medications which confer many benefits to patients with SLE and lupus nephritis, with a good safety profile.

Disclosure

Senq-J. Lee: None; Earl D. Silverman: None; Joanne M. Bargman: None.

Author details

¹The Hospital for Sick Children, Toronto, ON, Canada. ²Toronto General Hospital, Toronto, ON, Canada.

Published: 13 July 2012

doi:10.1186/1546-0096-10-S1-A29 Cite this article as: Lee *et al.*: The role of antimalarials in lupus nephritis: a review. *Pediatric Rheumatology* 2012 **10**(Suppl 1):A29.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit