MEETING ABSTRACT

P02-019 - Detection of risk factors for AA-amyloidosis

S Németh^{1*}, L Obici², S Grandemange³, H Lachmann⁴, C Oberkanins¹

From 7th Congress of International Society of Systemic Auto-Inflammatory Diseases (ISSAID) Lausanne, Switerland. 22-26 May 2013

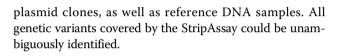
Introduction

Systemic reactive (AA) amyloidosis represents the most important complication within TNF receptor associated periodic syndrome (TRAPS), familial Mediterranean fever (FMF) and other autoinflammatory syndromes, progressively leading to endstage renal failure. The homozygous condition of the serum amyloid A (SAA) variant *SAA1.1* is significantly associated with the occurrence of AA amyloidosis in TRAPS patients. Likewise in FMF patients the *MEFV* mutation c.2080A>G (M694V) correlates with amyloidosis and the *SAA1.1/SAA1.1* genotype increases clinical severity (age at disease onset, amyloidosis, arthritis).

Objectives

To develop a reverse-hybridization assay (Amyloidosis StripAssay) for detection of (1) genetic markers modulating the risk of developing AA amyloidosis in TRAPS and FMF [c.209C>T, c.224T>C (*SAA1*); c.2080A>G (*MEFV*)], as well as (2) mannose-binding lectin 2 (*MBL2*) and *TNFRSF1A* variants, which are suspected to be modulating factors in TRAPS [g.4447 C>G, g.4776 C>G, g.5000 C>T, c.154C>T, c.161G>A, c.170G>A (*MBL2*); c.473-33C>T (*TNFRSF1A*)].

Methods


The Amyloidosis StripAssay is based on a multiplex PCR and hybridization of biotinylated amplicons under exactly defined stringency to a teststrip presenting a parallel array of allele-specific oligonucleotide probes. Specifically bound PCR products are detected using enzymatic colour reaction.

Results

The specificity of the StripAssay was validated by hybridizing teststrips against PCR products obtained from

¹ViennaLab Labordiagnostika GmbH, Vienna, Austria

Full list of author information is available at the end of the article

Conclusion

The Amyloidosis StripAssay proved to be a fast and reliable method for detection of genetic factors modulating the risk of developing AA amyloidosis in FMF and TRAPS. An association between *MBL2* alleles and amyloidosis is not conclusively established, but *MBL2* is of considerable diagnostic interest in closely related fields, including rheumatoid arthritis or innate immunity. Also in case of the *TNFRSF1A* intron 4 polymorphism c.473-33C>T the StripAssay could be a useful tool: the c.473-33C>T variant is involved in *TNFRSF1A* expression and an implication on the TRAPS phenotype still needs to be investigated.

Disclosure of interest

None declared.

Authors' details

¹ViennaLab Labordiagnostika GmbH, Vienna, Austria. ²Biotechnology Research Laboratories, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy. ³Unité médicale des maladies auto-inflammatoires, Hôpital Arnaud de Villeneuve, Montpellier, France. ⁴National Amyloidosis Centre, UCL Medical School, London, UK.

Published: 8 November 2013

doi:10.1186/1546-0096-11-S1-A126 Cite this article as: Németh *et al.*: P02-019 - Detection of risk factors for AA-amyloidosis. *Pediatric Rheumatology* 2013 11(Suppl 1):A126.

© 2013 Németh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.