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Abstract
Background Transcriptome profiling of blood cells is an efficient tool to study the gene expression signatures of 
rheumatic diseases. This study aims to improve the early diagnosis of pediatric rheumatic diseases by investigating 
patients’ blood gene expression and applying machine learning on the transcriptome data to develop predictive 
models.

Methods RNA sequencing was performed on whole blood collected from children with rheumatic diseases. 
Random Forest classification models were developed based on the transcriptome data of 48 rheumatic patients, 46 
children with viral infection, and 35 controls to classify different disease groups. The performance of these classifiers 
was evaluated by leave-one-out cross-validation. Analyses of differentially expressed genes (DEG), gene ontology 
(GO), and interferon-stimulated gene (ISG) score were also conducted.

Results Our first classifier could differentiate pediatric rheumatic patients from controls and infection cases with high 
area-under-the-curve (AUC) values (AUC = 0.8 ± 0.1 and 0.7 ± 0.1, respectively). Three other classifiers could distinguish 
chronic recurrent multifocal osteomyelitis (CRMO), juvenile idiopathic arthritis (JIA), and interferonopathies (IFN) from 
control and infection cases with AUC ≥ 0.8. DEG and GO analyses reveal that the pathophysiology of CRMO, IFN, and 
JIA involves innate immune responses including myeloid leukocyte and granulocyte activation, neutrophil activation 
and degranulation. IFN is specifically mediated by antibacterial and antifungal defense responses, CRMO by cellular 
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Background
Pediatric rheumatic diseases encompass a spectrum of 
autoimmune and autoinflammatory diseases that can 
affect the joints, muscles, bones, and other organs in 
children under the age of 16–18 years. Although many 
pediatric rheumatic diseases typically present with joint 
manifestations, other organs, including the eyes, skin, 
muscles, and gastrointestinal tract, may also be affected. 
Children who present with rheumatic symptoms often 
pose several challenges to their physicians. First, typical 
symptoms such as fever, rash, redness, pain and/or swell-
ing at joints are common in many rheumatic diseases: 
(i) a transient/self-limiting process such as (reactive) 
infectious arthritis, (ii) a relapsing process like auto-
inflammatory diseases (AID), (iii) a chronic condition 
like vasculitis, chronic recurrent multifocal osteomyeli-
tis (CRMO), or juvenile idiopathic arthritis (JIA), (iv) an 
interferonopathy (IFN) such as dermatomyositis or sys-
temic lupus erythematosus (SLE) characterized by dys-
regulation of type I interferon, or (v) diseases related to 
the human leukocyte antigen B51 serotype (HLA-B51). 
Second, once a disease has been confirmed, it is still diffi-
cult to make a rapid and definitive classification amongst 
the different subtypes within the disease due to its rarity 
and clinical presentation variability. This has challenged 
physicians’ efforts in making specific diagnoses and 
assigning proper treatments.

Transcriptome profiling of blood cells has proven to 
be useful and efficacious in identifying gene expression 
signatures in rheumatic diseases [1, 2], enabling physi-
cians to make data-driven and patient-specific decisions. 
Thanks to the use of transcriptomics, the participation 
of type I interferons participate in the pathophysiology 
of SLE [3] and dermatomyositis [4]  was discovered and 
has become one of the paramount findings in rheuma-
tology. Psoriatic arthritis is another exemplary disease 
demonstrating the usefulness of applying transcriptomics 
to identify important pathways related to interleukins 
IL-12, IL-17 and IL-23 [1]. Large datasets of gene expres-
sion generated from such studies are highly interesting, 
yet their systematic analysis and interpretation is quite 
challenging. Thus, there has been considerable inter-
est in applying machine learning on blood cells’ gene 
expression in order to obtain new insights into the patho-
physiology of rheumatic diseases which in turn may have 

important implications for their clinical management [5, 
6].

By investigating the whole blood gene expression of 
children with rheumatic diseases in comparison with 
reactive/post-infection controls, we aim to develop com-
putational classifiers based on the obtained transcrip-
tome data that allow us to identify pediatric patients with 
rheumatic diseases and distinguish different rheumatic 
groups (e.g., CRMO, JIA, and IFN), and thus, ultimately, 
to improve the diagnosis of future patients.

Methods
Patients and controls
After obtaining written consent, 48 children (1 to 16 
years old) with rheumatic diseases (i.e., AID, CRMO, 
IFN, JIA, vasculitis, and HLA-B51 related rheumatic 
diseases) were recruited, prior to any treatment except 
non-steroidal anti-inflammatory drugs (NSAIDs), from 
May 2016 until August 2020, at the Divisions of Pediat-
ric Rheumatology of four hospitals in Belgium (Antwerp 
Hospital Network, Antwerp University Hospital, Brus-
sels University Hospital, and Ghent University Hospi-
tal). Venous blood was collected into PAXgene® Blood 
RNA tubes (PreAnalytiX, Switzerland). Clinical details 
of the patients can be found in Table S1. As controls, 46 
children with PCR-confirmed viral (mainly enterovirus) 
infections were also recruited and requested to provide 
blood twice: first while being actively infected, and sec-
ond following remission [7]. Only 35 children agreed to a 
second venapunction as it was not obligatory.

RNA extraction
PAXgene® Blood RNA tubes were kept at -80  °C within 
72 h after blood collection until use. RNA extraction was 
performed via a column-based RNA extraction using the 
PAXgene® Blood RNA extraction kit (Qiagen, Germany). 
To optimize RNA concentrations, we used the RNA 
Clean & Concentrator™-5 kit (Zymo Research, USA). 
We verified the RNA quality using the RNA ScreenTape 
Analysis on the Tapestation (Agilent, USA).

3’ mRNA library preparation and sequencing
All RNA samples were prepared with the Quant-
Seq3′ mRNA-Seq Library Prep Kit for Illumina (Lexo-
gen GmbH, Austria) following the standard supplier’s 

response to cytokine, and JIA by cellular response to chemical stimulus. IFN patients particularly had the highest 
mean ISG score among all disease groups.

Conclusion Our data show that blood transcriptomics combined with machine learning is a promising diagnostic 
tool for pediatric rheumatic diseases and may assist physicians in making data-driven and patient-specific decisions in 
clinical practice.
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protocol for long fragments. During the RNA removal 
step, we also added globin blockers, so none of the abun-
dant globin mRNA was copied to double stranded cDNA. 
The resulting amplified cDNA libraries were equimolarly 
pooled and sequenced on NextSeq 500 (high output v2,5 
kit, 150 cycli, single read) (Illumina, USA) with up to 40 
samples per batch. This gave us an optimum of 10 million 
reads for each sample. All samples were prepared and 
sequenced in 4 batches.

Raw data processing
Raw data from the NextSeq was demultiplexed and fur-
ther processed per batch through an in-house pipeline. 
The quality of all reads was evaluated using FastQC 
(v0.11.9) before and after processing with Trimmomatic 
(v0.36). Trimmomatic removed the leading 20 bases 
from reads, ensure a minimum quality score of 15 over 
a sliding window of 4 bases and required a minimum 
read length of 30 bases. As usage of oligodT primers 
might cause poly-A stretches at the 3′ end, the latter end 
was trimmed with our own in-house poly-A removal 
script. All sequences that remained after trimming were 
mapped against the human reference genome build 38 
(polymorph variants excluded) with HISAT2 (v2.0.4). 
HTseq (v0.6.1) was used to count all reads for each gene 
and generate a readcount table.

Cluster identification
Clustering is an unsupervised learning algorithm that is 
used to discover patterns in high-dimensional data that 
would not be easily identified by conventional statistics. 
The readcount table obtained after raw data processing 
was normalized by median scaling. Then, the t-distrib-
uted stochastic neighbor embedding (t-SNE) method and 
hierarchical clustering algorithms were applied on the 
normalized readcount data to assign data into different 
clusters based on the (dis)similarity in the gene expres-
sion between samples.

Differential gene expression and gene ontology 
enrichment analyses
Preliminary filtering of the normalized readcount data 
was performed by removing genes with fewer than 10 
readcounts over all samples. Differential gene expression 
analyses were performed using the DESeq2 Bioconduc-
tor package in the open-source statistical software R. To 
account for batch effects, the batch number was included 
in the DESeq2 design. Differentially expressed genes with 
log2 fold change ≥ 2 (either up- or down-regulated) and 
p-value < 0.01 (adjusted for multiple testing by the False 
Discovery Rate method) were passed on to gene ontology 
enrichment analysis using the topGO package in R. Fish-
er’s exact test was performed to determine significantly 

enriched/depleted gene ontology terms relating to bio-
logical processes.

Classifier development
Due to the larger number of genes in the dataset, a fea-
ture selection step was performed using the Boruta pack-
age in R [8] with a Bonferroni correction to identify genes 
that had good predictive power for disease classification. 
The Boruta algorithm was applied on the normalized 
gene expression values obtained from DESeq2. With the 
Boruta selected genes, classification models were trained 
using the Random Forest algorithm [9], also in R. Vali-
dation of the trained classifiers was performed using a 
leave-one-out cross-validation strategy. In this strat-
egy, a single sample would be removed from the dataset 
and a classification model was trained on the remain-
ing samples. The model was then used to classify the 
left-out sample. This process would be repeated for all 
samples in the dataset. Receiver-operator-characteristic 
(ROC) curves and the area-under-the-curve (AUC) were 
employed using the package pROC [10] in R to evaluate 
the classifier performance. AUC values were displayed in 
figures as mean ± confidence interval (95%).

Calculation of interferon-stimulated genes’ scores
First, relative expression (RE) was calculated 
based on the readcounts of interferon-stimulated 
genes (ISG) and the housekeeping gene GAPDH: 
RE = 2-(count ISG−count GAPDH). The ISG score was cal-
culated by summing up the individual RE per gene 
after normalization to the control group as follows: ∑

(REsubject − Meancontrol) /Standard Deviationcontrol
.  28 ISG were selected for ISG score calculation (Table 
S4) [11]. Statistical significance was assessed using Mann-
Whitney test. * P < 0.05; ** P < 0.005.

Results
Transcriptome profiles of rheumatic diseases, viral 
infection, and convalescent controls
We compared the transcriptome profiles of six rheumatic 
disease groups (i.e., JIA, AID, CRMO, HLA-B51, IFN, 
and vasculitis) with viral infection and convalescent con-
trols. Clustering analyses using t-SNE and hierarchical 
algorithms were displayed in Fig. 1 and Figure S1, respec-
tively. As shown in the t-SNE plot in Fig. 1, most controls 
were gathered in cluster 1 while infection cases were 
grouped into a separate cluster 2, which implies that the 
gene expression of actively infected cases and remission 
cases (i.e., controls) is substantially independent despite 
coming from the same participants. However, patients 
with different rheumatic diseases were not well distin-
guished and assigned mostly to cluster 3, while cluster 4 
contained a mixture of different categories.
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Classifier development
The Random Forest algorithm was used for classi-
fier development because it uses the ensemble learn-
ing technique that is robust to outliers, stable with new 
data, and can handle non-linear correlations. The first 
classifier was developed to distinguish between control, 
infection, and pediatric rheumatic cases based on nor-
malized transcriptome data. Leave-one-out cross-vali-
dation results in Fig. 2a confirm that the classifier could 
differentiate pediatric rheumatic patients from nega-
tive controls (AUC = 0.8 ± 0.1) and from viral infection 
cases (AUC = 0.7 ± 0.1). The Boruta algorithm selected 
349 genes out of 31,319 initial genes (Table S2) for the 
training of this classifier between control, infection, and 
pediatric rheumatic cases. Some of the notable selected 
genes were CD3G, CD96, and CD200R1 (CD200 recep-
tor 1). The gene CD3G encodes the CD3γ polypeptide, 
which forms a part of the CD3-TCR (T-cell receptor) 
complex. This complex plays an important role in anti-
gen recognition and several intracellular signal-trans-
duction pathways. This finding indicates that some of 
the rheumatic diseases are specifically connected to the 
alteration and malfunction of γ T-cells. Previous stud-
ies have also reported the association of γ and δ T-cells 
with (immunodeficiency and) autoimmune diseases [12]. 
CD96 is expressed on T-cells and natural killer cells. It 
belongs to a family of molecules that provide costimula-
tory and coinhibitory signals during T-cell activation. It 
was shown to inhibit the expansion and IL-9 production 
of Th17 cells and thus, reduce inflammation and patho-
genicity [13]. CD200R1 is also expressed on T-cells, as 
well as myeloid cells. It was reported to alter the balance 

between Th17 cells and regulatory T-cells in SLE patients 
[14] and has also been confirmed as one of the genetic 
factors susceptible to JIA, especially oligoarticular JIA 
[15]. Aberrant expression of CD200R1 was shown to con-
tribute to abnormal Th17 cell differentiation and chemo-
taxis in patients with rheumatoid arthritis [15].

More specific classifiers were then developed per dis-
ease group. As the number of rheumatic patients in our 
dataset was limited, these classifiers focused only on 
CRMO, IFN, and JIA groups, which had more subjects 
for model training and validation than the other disease 
groups. Three classifiers were developed to distinguish 
patients with CRMO (n = 6), IFN (n = 6), and JIA (n = 20) 
from control (n = 35) and infection (n = 46) cases. They 
worked quite well as their AUC values are above or equal 
to 0.8 (Fig. 2b). Since CRMO, IFN, and JIA were differ-
entiated well from control and infection cases, it was 
subsequently important to examine how they could be 
distinguished from one another. ROC curves and AUC 
values of a classifier between CRMO, IFN, and JIA (Fig-
ure S2) indicated that IFN could be distinguished rela-
tively well from CRMO and JIA (AUC = 0.7 ± 0.2/0.3), 
however CRMO is not easily differentiated from JIA 
(AUC = 0.5 ± 0.3), likely explained by the limited sample 
size. The Boruta-identified genes for these classifiers are 
also presented in Table S2. There were 349 selected genes 
from the CRMO-control-infection classifier, 247 genes 
from the IFN-control-infection classifier, and 286 genes 
from the JIA-control-infection classifier. As expected, 
more interferon-related genes were selected for the IFN 
classifier compared to those of CRMO and JIA.

Fig. 1 t-SNE plot of 4 different clusters
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Fig. 2 ROC curves and AUC values from leave-one-out cross-validation of classifier between (a) negative controls (i.e., control), viral infected subjects (i.e., 
infection) and subjects with rheumatic diseases (i.e., Pedrheum); and more specifically between (b) CRMO, IFN, JIA and control/infection cases
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Differential expression and gene ontology enrichment 
analyses
We analyzed the differentially expressed genes (DEGs) of 
CRMO, IFN, and JIA versus controls. The resulting DEGs 
were translated to corresponding Gene Ontology (GO) 
categories to understand which pathways were involved 
in the disease pathophysiology. Many of the top 10 GO 
categories of CRMO, IFN, and JIA groups are related to 
innate immunity including myeloid leukocyte and granu-
locyte activation, neutrophil activation and degranulation 
(Fig.  3a and Table S3). In IFN particularly, the immu-
nity is largely mediated by antibacterial and antifungal 
defense responses. Results from GO analyses of CRMO, 
IFN, and JIA against the other Pedrheum groups are dis-
played in Figure S3 and Table S3. Although the classifiers 
could not adequately differentiate between CRMO and 
JIA, we noted that 1,106 DEGs could be found between 
CRMO and all other Pedrheum groups, 1,730 DEGs 
in the case of IFN, and 1,216 DEGs for JIA (Table S5). 
Additionally, more than 170 DEGs were found between 

CRMO and IFN, CRMO and JIA, as well as between IFN 
and JIA (Table S5).

ISG scores
Using the whole blood gene expression obtained from 3’ 
mRNA sequencing, we calculated the ISG scores of IFN 
patients and compared them with those from other dis-
ease groups. As displayed in Fig. 3b, IFN patients had the 
highest mean score of 18. Other disease groups, although 
displaying lower mean scores than IFN (6.0 for AID, 4.0 
for CRMO, 9.0 for HLA-B51, 3.9 for JIA, 7.8 for vasculi-
tis, and 14 for infection cases), did include some patients 
with particularly high scores: one AID patient had a 
score of 58, one HLA-B51 patient had score 48, and one 
vasculitis patient had score 44. Interestingly, longitudi-
nal tracking of ISG scores was proven feasible using 3’ 
mRNA sequencing. Indeed, we showed that one patient 
with Aicardi-Goutières syndrome had significantly high 
ISG scores at early presentations that decreased follow-
ing initiation of JAK-inhibition via tofacitinib (see Figure 
S4).

Fig. 3 (a) Gene ontology enrichment analysis of CRMO-, IFN-, and JIA-associated genes. Bar charts the top 10 GO terms for biological process. (b) ISG 
score by disease group; horizontal lines represent median values of each group; Mann-Whitney test for statistical significance: * P < 0.05; ** P < 0.005
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Discussion
Application of transcriptomics techniques such as micro-
array or sequencing on blood or synovial fluid of rheu-
matic patients has been a key transforming factor in 
rheumatology [1]. In the current study, we showed that 
3’ mRNA from whole blood can provide adequate infor-
mation for the differentiation between controls, viral 
infections, and pediatric rheumatic diseases. We demon-
strated that the Random Forest algorithm can be applied 
on blood transcriptome data to determine whether a 
pediatric patient has reactive/post-infection phenomena 
or an autoimmune/autoinflammatory disease. Further-
more, studies on autoimmune and autoinflammatory dis-
eases have largely focused on adaptive immunity, that is, 
regulatory and autoreactive T-cells [16]. Our study hereby 
provides evidence that innate immunity may also have 
an important role in the pathophysiology of pediatric 
rheumatic autoimmune and autoinflammatory diseases, 
including CRMO, IFN, and JIA. Moreover, we showed 
that the activation and immune response of myeloid cells 
form participate in the biological pathways underlying 
JIA, CRMO and IFN – three of the most common rheu-
matic diseases in children. Via the DEG and GO analyses, 
we found that the immunological activities of innate cells, 
such as neutrophils and granulocytes, were highly asso-
ciated with CRMO, IFN, and JIA compared to the viral 
convalescent controls. Interestingly, in the IFN group, the 
immunity seems to be largely mediated by antibacterial 
and antifungal defense responses. This could be a sign of 
molecular mimicry where self-derived peptides resemble 
foreign antigens and thus stimulate the antigen-specific 
autoreactive T-cells or B-cells, which in turn results in 
the production of pro-inflammatory cytokines [17, 18]. 
One of them is type I interferon, which plays an impor-
tant role in the pathophysiology of IFN disease and which 
also has been reported to participate in the immune 
response against viral, bacterial, fungal pathogens, and 
parasites [19]. GO analyses comparing CRMO, IFN, and 
JIA with the other Pedrheum groups (Figure S3 and Table 
S3) reveal that CRMO is specifically driven by cellular 
response to cytokine, JIA by cellular response to chemi-
cal stimulus, and IFN by the activation of myeloid leuko-
cytes, neutrophils, and granulocytes. The dysregulated 
cytokine expression from innate immune cells has been 
concluded to have central contribution to the inflamma-
tory phenotype of CRMO by Hofmann et al. [20]. JIA on 
the other hand has been found to be associated with anti-
biotics exposure in a dose- and time- dependent fashion 
in a large pediatric population by Horton et al. [21].

The over-expression of ISG is a useful biomarker of 
IFN diseases, including SLE. Although the interferon 
signature was first defined in SLE patients, different ISG 
are investigated to classify pathological conditions of 
other interferonopathies and lupus-like disorders (e.g., 

dermatomyositis, Aicardi-Goutières syndrome) to guide 
molecular diagnostics and to formulate targeted therapy 
approaches [22]. Quantitative polymerase chain reac-
tion (qPCR) has been the method of choice to measure 
the expression of ISG and estimate the ISG score, but 
this approach has low throughput as qPCR can only ana-
lyze pre-determined genes and the number of genes to 
be analyzed simultaneously is limited [23]. Using whole 
blood gene expression obtained from 3’ mRNA sequenc-
ing, we were able to calculate the ISG scores without 
gene pre-selection or gene number limitation. Our data 
show that the average score of IFN group was the high-
est among all disease categories, thereby confirming that 
the highly expressed ISG are signatures of interferonop-
athies. More importantly, we showed that robust longi-
tudinal tracking of ISG scores is possible with the use of 
3’ mRNA sequencing. Beside the IFN group, viral infec-
tion cases also displayed high average ISG scores due 
to the participation of type I interferon in the immune 
responses against viral infection [19].

Despite demonstrating that blood RNA sequencing 
can distinguish autoimmune/autoinflammatory dis-
eases from viral infection/post-infection cases, as well 
as reveal their key genes and pathways, our study is lim-
ited by the sample size of each rheumatic disease, due 
to which cross-validation was done to validate the clas-
sifiers’ performance instead of training and testing on 
independent datasets. The limited number of rheumatic 
cases may also be responsible for the modest cross-val-
idation performance of the CRMO-IFN-JIA classifier 
although rheumatic diseases in general could be identi-
fied well from controls and infections. Another limitation 
that challenges the predictive performance of our classi-
fiers is disease heterogeneity. IFN and JIA are examples 
of heterogeneous groups that pose great difficulties for 
the classifiers to differentiate from other groups because 
they contain several disease subgroups (e.g., dermato-
myositis and systemic lupus erythematosus were grouped 
together as IFN, and JIA included polyarticular, oligoar-
ticular types, as well as spondyloarthropathies). The het-
erogeneity of diseases often obstructs explicit modelling 
of underlying distributions of individual features, which 
can be even more problematic when the sample popu-
lation is small [24]. Finally, although efforts were made 
to minimize batch effects, these cannot always be com-
pletely avoided.

To incorporate the expression-based assessment into 
clinical use, it is necessary to demonstrate that the reli-
ability and accuracy of this approach is comparable or 
superior to the currently used methods. The development 
of diagnostic criteria is challenging in rheumatology due 
to the heterogeneity of many rheumatic diseases, vari-
able clinical presentations, and complex pathophysiology. 
Given the lack of optimal diagnostic criteria, physicians 
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must rely on a complicated decision-making process 
based on a combination of symptoms, physical examina-
tion, exclusion of competing diagnoses, and geographic 
prevalence [25]. Moreover, there is an ongoing concern 
that physical examination is insensitive in detecting 
subtle, smoldering synovitis [26]. Since the completion 
of the Human Genome Project in 2003, next-generation 
sequencing has seen great improvements in technique 
and decline in cost. In addition, the whole protocol from 
RNA extraction, library preparation, and sequencing 
until data pre-processing and disease classification using 
machine learning only takes 4–5 days in our experience, 
given that a classifier is already developed and validated. 
This is a similar average amount of time it would take to 
complete a blood test and other assessments for the diag-
nosis of rheumatic diseases. Thus, the approach proposed 
in this study, where machine learning is developed based 
on blood transcriptome data, should be highly affordable 
and applicable in clinical practice. Since gene expression 
variations in blood cells of rheumatic patients can predate 
the clinical manifestations [27], blood gene expression 
profiling is useful in identifying new biomarkers of pedi-
atric rheumatic diseases and, together with the machine 
learning classifiers presented in this study – after further 
development and validation – will be an efficient tool for 
early diagnosis and heterogeneity exploration of pediatric 
rheumatic diseases. We believe that adding more cases 
of pediatric rheumatic diseases to the database will pro-
vide more data for the classifier to be trained on, allow-
ing it to capture more distinct transcriptome features and 
variances of each disease, as well as get validated on an 
independent test set. It would also be useful to collect 
blood from the same patients over fixed time periods or 
before and after therapy to obtain longitudinal transcrip-
tome data so that we can update and improve the model 
to foresee patients’ clinical course or treatment response.

Conclusion
Overall, our study indicates that blood transcriptomics 
is a promising tool to improve the diagnosis of pediat-
ric rheumatic diseases. The ease of sample collection as 
well as the continuous enhancement and affordability 
of sequencing techniques can overcome the challenges 
of patient heterogeneity and allow for further fruitful 
research.
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